Piecewise Polynomial Functions and the Fast Fourier Transform
نویسنده
چکیده
Piecewise polynomial functions are frequently used to approximate functions that exhibit complex behavior across a variety of scales. We investigate the use of nonuniform FFT (NUFFT) approaches to quickly and accurately evaluate the first several Fourier series coefficents of piecewise linear functions, and propose a new NUFFT approach that provides quick convergence at relatively low cost.
منابع مشابه
gH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملA geometric nonuniform fast Fourier transform
An efficient algorithm is presented for the computation of Fourier coefficients of piecewise-polynomial densities on flat geometric objects in arbitrary dimension and codimension. Applications range from standard nonuniform FFTs of scattered point data, through line and surface potentials in two and three dimensions, to volumetric transforms in three dimensions and higher. Input densities are s...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملRecovering piecewise smooth functions from nonuniform Fourier measurements
In this paper, we consider the problem of reconstructing piecewise smooth functions to high accuracy from nonuniform samples of their Fourier transform. We use the framework of nonuniform generalized sampling (NUGS) to do this, and to ensure high accuracy we employ reconstruction spaces consisting of splines or (piecewise) polynomials. We analyze the relation between the dimension of the recons...
متن کاملFast Spherical Harmonic Transform Algorithm based on Generalized Fast Multipole Method
Spherical harmonic transform is the most important orthogonal function transform only except Fourier transform, and is used not only for climate simulation and signal processing but also for a base of several numerical algorithms. Fast Fourier Transform (FFT), which runs in time O(N logN) is quite well known, but, for spherical harmonic transform, there is no fast algorithm which is as simple a...
متن کامل